Proceedings of IDETC/CIE 2005

ASME International Design Engineering Technical Conferences &

Computers and Information in Engineering Conference
September 24-28, 2005, Long Beach, California, USA

DETC2005-85597

CVODES, THE SENSITIVITY-ENABLED ODE SOLVER IN SUNDIALS*

Radu Serban'
Alan C. Hindmash
Center for Applied ScientiEc Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-560, Livermore, California, 94551
Email: radu@Ilinl.gov, alanh@lInl.gov

ABSTRACT

CVODES, which is part of the SUNDIALS software sulite,
is a stiff and nonstiff ordinary differential equation initial value
problem solver with sensitivity analysis capabilities. CVODES
is written in a data-independent manner, with a highly modu-
lar structure to allow incorporation of different preconditioning
and/or linear solver methods. It shares with the other SUNDI-
ALS solvers several common modules, most notably the generic
kernel of vector operations and a set of generic linear solvers
and preconditioners.

CVODES solves the IVP by one of two methods — backward
differentiation formula or Adams-Moulton — both implemented
in a variable-step, variable-order form. The forward sensitiv-
ity module in CVODES implements the simultaneous corrector
method, as well as two mavors of staggered corrector methods.
Its adjoint sensitivity module provides a combination of check-
pointing and cubic Hermite interpolation for the efEcient gener-
ation of the forward solution during the adjoint system integra-
tion.

We describe the current capabilities of CVODES, its design
principles, and its user interface, and provide an example prob-
lem to illustrate the performance of CVODES.

*This work was performed under the auspices of the U.S. Department of En-
ergy by the University of California, Lawrence Livermore National Laboratory,
under contract No. W-7405-Eng-48.

TAddress all correspondence to this author.

1 Introduction

Fortran solvers for ODE initial value problems (I\VPs) are
widespread and heavily used. Two solvers that have been written
at LLNL in the past are VODE [1] and VODPK [2]. The capa-
bilities of both VODE and VODPK have been combined in the
C-language packages CVODE [3] and PVVODE [4], later merged
under the suite SUNDIALS [5] into one solver, CVODE, which
runs on both serial and parallel computers. Besides CVODE,
the other two basic solvers in SUNDIALS are IDA, a solver
for differential-algebraic equation (DAE) systems, and KINSOL,
a Newton-Krylov (GMRES) solver for nonlinear algebraic sys-
tems.

In recent years, research and development related to the
SUNDIALS solvers has focused on sensitivity analysis to ad-
dress questions related to unknown parameters in the mathemat-
ical models under consideration. Essentially, sensitivity analysis
guantifes the relationship between changes in model parameters
and changes in model outputs. Such information is crucial for de-
sign optimization, parameter estimation, optimal control, data as-
similation, process sensitivity, and experimental design. SUNDI-
ALS is currently being expanded to include sensitivity-capable
variants of all its basic solvers. The £rst one, CVODES, released
in July 2002, is written with a functionality and user interface that
is a superset of that of CVODE. In that sense, CVODES is back-
ward compatible with CVODE. Sensitivity analysis capabilities,
both forward and adjoint, have been added to the main integrator.
Enabling forward sensititivity computations in CVODES will re-
sult in the code integrating the so-called sensitivity equations si-

Copyright (© 2005 by ASME

multaneously with the original 1VP, yielding both the solution
and its sensitivity with respect to parameters in the model. Ad-
joint sensitivity analysis involves integration of the original IVP
forward in time followed by the integration of the so-called ad-
joint equations backwards in time. CVODES provides the infras-
tructure needed to integrate any £nal-condition ODE dependent
on the solution of the original IVP (not only the adjoint system).

Development of CVODES was concurrent with a redesign
of the vector operations module (NVECTOR) across the SUN-
DIALS suite. The key feature of the new NVECTOR module
is that it is written in terms of abstract vector operations with
the actual vector kernels attached by a particular implementation
(such as serial or parallel). This allows writing the SUNDIALS
solvers in a manner independent of the actual NVECTOR vector
implementation (which can be user-supplied), as well as allow-
ing more than one NVECTOR module linked into an executable
£le. This feature is essential in certain sensitivity analysis com-
putations and impossible in Fortran.

Like all the SUNDIALS solvers, CVODES is written in
ANSI-C. Among the advantages of using C, we mention porta-
bility of the solver libraries, compiler availability, a standard dy-
namic memory allocation mechanism, and the ability to deEne
complex data structures. The design of the SUNDIALS solvers
does not impede interlanguage operability. As an example of us-
ing a SUNDIALS solver with Fortran user code, the reader is
refered to the Fortran-C interface provided for CVODE [5, 6].

The rest of this paper is organized as follows. In Sec-
tion 2, the algorithms implemented in CVODES for ODE in-
tegration and forward and adjoint sensitivity analysis are pre-
sented. The CVODES code organization and relationship to
SUNDIALS is discussed in Section 3, while Section 4 gives a
high-level overview of the solver usage and general philosophy
of the user interface. Section 5 presents an example problem and
its solution on a parallel machine. We conclude with indications
on software availability in Section 6 and with some £nal remarks
and directions of current and future development in Section 7.

2 Algorithms
CVODES solves initial value problems with free parame-
ters. Such problems can be stated as

$="1(t,y,p), y(b)=Yo(p), 1)

where y € RN is the vector of state variables, ¢ = dy/dt, and
p € RNe are problem parameters. Additionally, CVODES can
also compute £rst order derivative information, performing ei-
ther forward sensitivity analysis or adjoint sensitivity analysis.
In the £rst case, CVODES computes the sensitivities of the solu-
tion with respect to the parameters p, while in the second case,
CVODES computes the gradient of a derived function with re-
spect to the parameters p.

In the rest of this section we describe the algorithms im-
plemented in CVODES, with emphasis on sensitivity analysis.
We give only a brief overview of the ODE integration algorithm
to introduce some of the quantities needed in the sequel. Since
CVODES shares its main integration algorithm with CVODE,
the interested reader is directed to [5].

2.1 ODE Integration

CVODES solves the IVP using either Backward Differentia-
tion Formula (BDF) methods or Adams-Moulton methods. Both
are implemented with dynamically varying stepsize and order,
based on the control of local errors to meet user-specifed toler-
ances. A central feature of the method is the solution, at each
time step, of a nonlinear system of size N, of the form

F(yn) =Yn—VYnf(ta,yn, p) —an =0)

where v, is a scalar and ap, is a constant vector. This system
is solved by either functional (Expoint) iteration or some form
of Newton iteration. In the latter case, the matrix in the linear
system for Newton corrections has the form M = | — y,Jn, Where
Jo=0f /0y at (tn,yn).

CVODES also incorporates an algorithm for special treat-
ment of quadratures depending on the solution y of (1). An ef£-
cient quadrature computation is needed in the context of adjoint
sensitivity anal¥sis (see Section 2.3). Evaluation of integrals of
the form G = ftof g(t,y, p)dt can be done effciently using the un-
derlying linear multistep method interpolating polynomials by
appending to (1) an additional ODE = g(t,y, p), with initial
condition @(tp) = 0, in which case G = @(ts). In the context of
an implicit ODE integrator, since the right-hand side of this ad-
ditional equation does not depend on @, such equations need not
participate in the solution of the nonlinear system (2). CVODES
allows the user to identify these equations separately from those
in (1) and provides the option of including or excluding ¢ from
the error control algorithm. A similar treatment of quadratures is
included in the DASPK3 code [7, 8].

A complete description of the CVODES integration algo-
rithm, including the nonlinear solver convergence, error control
mechanism, and heuristics related to stopping criteria and £nite-
difference parameter selection, is given in [5].

2.2 Forward Sensitivity Analysis

Typically, the governing equations of complex, large-scale
models depend on various parameters, through the right-hand
side vector and/or through the vector of initial conditions, as in
(2). In addition to numerically solving the ODEs, it may be de-
sirable to determine the sensitivity of the results with respect to
the model parameters. Such sensitivity information can be used
to estimate which parameters are most inauential in affecting the

Copyright (© 2005 by ASME

behavior of the simulation or to evaluate optimization gradients
(in the setting of dynamic optimization, parameter estimation,
optimal control, etc.).

The solution sensitivity with respect to the model parameter
pi is defned as the vector s;(t) = dy(t)/dp; and satis£es the fol-
lowing forward sensitivity equations (or in short sensitivity equa-
tions):

of of oyo(p)
ay” (o) opi

¢ api

: ®)

obtained by applying the chain rule of differentiation to the orig-
inal ODEs (1).

When performing forward sensitivity analysis, CVODES
carries out the time integration of the combined system, (1) and
(3), by viewing it as an ODE system of size N(Ns+ 1), where Ng
represents a subset of model parameters p;, with respect to which
sensitivities are desired (Ns < Np). The sensitivity equations are
solved with the same linear multistep formula that was selected
for the original ODEs and, if Newton iteration was selected, the
same linear solver is used in the correction phase for both state
and sensitivity variables. In addition, CVODES offers the op-
tion of including (full error control) or excluding (partial error
control) the sensitivity variables from the local error test.

2.2.1 Forward sensitivity methods. In what fol-
lows we brieay describe three methods that have been proposed
for the solution of the combined ODE and sensitivity system for
the vector ¥ = [y, S1,...,Sng)-

Staggered Direct. In this approach [9], the nonlinear system
(2) is £rst solved and, once an acceptable numerical solution is
obtained, the sensitivity variables at the new step are found by
directly solving (3) after the BDF discretization is used to elimi-
nate §. Although the system matrix of the above linear system is
based on exactly the same information as the matrix M, it must
be updated and factored at every step of the integration, in con-
trast to M which is updated only ocasionally. For problems with
many parameters (relative to the problem size), the staggered di-
rect method can outperform the methods described below [10].
However, the computational cost associated with matrix updates
and factorizations makes this method unattractive for problems
with many more states than parameters (such as those arising
from semidiscretization of PDEsS).

Simultaneous Corrector. In this method [11], the BDF dis-
cretization is applied simultaneously to both the original equa-
tions (1) and the sensitivity systems (3) resulting in an extended
nonlinear system in the unknown ¥ = [y, S1,...,Sng):

yn - han,O fA(tna yn) - én = 07

where f = [f,...,(8f/dy)si+ (0f/dpi),...] and &, are the terms
in the BDF discretization that depend on the solution at previous
integration steps. This combined nonlinear system can be solved
using either functional or Newton iteration. In the latter case,
Maly and Petzold have shown that 2-step quadratic convergence
can be attained with a modi£ed Newton scheme which uses only
the block-diagonal portion of the iteration matrix. This results
in a decoupling that allows the reuse of M without additional
matrix factorizations. However, the products (9f /dy)s; as well
as the vectors 0 f /dp; must still be reevaluated at each step of the
iterative process to update the sensitivity portions of the residual.

Staggered corrector. In this approach [12], as in the staggered
direct method, the nonlinear system (2) is solved £rst for the
state variables. Then, a separate nonlinear iteration is used to
solve the sensitivity system. In this approach, the vectors 0 /dp;
need be updated only once per integration step, after the state
correction phase has converged. When using functional itera-
tion, this amounts to using a stationary iterative method for the
linear system (3). When using Newton iteration, this amounts
to using a modifed-Newton iteration to solve the linear system
(3), the Newton iteration matrix being only an approximation to
the system matrix. An important observation is that the stag-
gered corrector method, combined with Newton iterations and
the SPGMR linear solver, effectively results in a staggered direct
method [13]. Indeed, SPGMR requires only the action of the ma-
trix M on a vector and this can be provided with up-to-date Ja-
cobian information. Therefore, the modifed Newton procedure
will theoretically converge after one iteration.

CVODES implements the simultaneous corrector method
and two oavors of the staggered corrector method which differ
only if the sensitivity variables are included in the error control
test. In the full error control case, the £rst variant of the staggered
corrector method requires the convergence of the nonlinear sen-
sitivity iterations for all Ng sensitivity sytems and then performs
the error test on the sensitivity variables. The second variant of
the method will perform the error test for each sensitivity vector
si (i=1,...,Ng), individually, as they pass the convergence test.
Differences in performance between the two variants may there-
fore be noticed whenever one of the sensitivity vectors s; fails a
convergence or error test.

We note that the DASPK3.0 code [7, 14] implements the
staggered direct, simultaneous corrector, and staggered corrector
methods. The code DSL48S [12, 15] also contains the staggered
corrector method.

2.2.2 Tolerances for sensitivity variables. If the
sensitivities are included in the error test, CVODES provides
an automated estimation of absolute tolerances for the sensitiv-
ity variables based on the absolute tolerance for the correspond-
ing state variable. The relative tolerance for sensitivity variables
is set to be the same as for the state variables. The selection

Copyright (© 2005 by ASME

of absolute tolerances for the sensitivity variables is based on
the observation that the sensitivity vector s; will have units of
[v]/[pi]. With this, the absolute tolerance for the j-th compo-
nent of the sensitivity vector s; is set to ATOL j /| pj|, where ATOL
are the absolute tolerances for the state variables and p is a vec-
tor of scaling factors that are dimensionally consistent with the
model parameters p and give indication of their order of mag-
nitude. This choice of relative and absolute tolerances is equiv-
alent to requiring that the weighted root-mean-square norm of
the sensitivity vector s; with weights based on s; is the same
as the weighted root-mean-square norm of the vector of scaled
sensitivities §; = | pj|si with weights based on the state variables
(the scaled sensitivities §; being dimensionally consistent with
the state variables). However, this choice of tolerances for the s;
may be a poor one, and the user of CVODES can provide differ-
ent values as an option.

2.2.3 Sensitivity right-hand side. There are sev-
eral methods for evaluating the right-hand side of the sensitiv-
ity systems (3): analytic evaluation, automatic differentiation,
complex-step approximation, and £nite differences (or direc-
tional derivatives).

Since it allows for user-de£ned functions for the evaluation
of any and all derivative information, CVODES provides all the
software hooks for implementing interfaces to automatic differ-
entiation or complex-step approximation. We have prototyped
an automated code generator tool (not included in the CVODES
distribution) which parses C code and generates C++ code to per-
form complex arithmetic. The user’s right-hand side function
can thus be transformed to allow for the automatic generation of
derivative information using complex-step approximations [16].
This approach allows for very accurate numerical estimation of
derivatives as it circumvents the subtraction cancellation error
typical for £nite difference methods. However, any code trans-
formation approach to the automatic generation of derivative in-
formation from C functions (for example ADIC [17]) has the dis-
advantage of requiring transformations on the user’s data struc-
tures, which are otherwise treated as black boxes by CVODES.
This makes the design of general interfaces a challenging task,
but we are investigating avenues to overcome this issue.

The default option in CVODES for the evaluation of sensi-
tivity right-hand sides is to use £nite difference-based approx-
imations for the terms (0f/dy)s; and of/dpi, or directional
derivatives to evaluate (0f /dy)s; +df/dp;. As is typical for £-
nite differences, the proper choice of perturbations is a delicate
matter. CVODES takes into account several problem-related fea-
tures: the relative ODE error tolerance RTOL, the machine unit
roundoff U, the scale factor p;, and the weighted root-mean-
square norm of the sensitivity vector s;.

Using central £nite differences as an example, the two terms
(0f/dy)si and 0f /dp; in the right-hand side of (3) can be evalu-

ated separately:

of _ f(ty+0ys,p)— f(t.y—0ysi.p)

I 25, G

of _ f(ty.p+oie)—f(ty.p—oie) @)

opi 20;j ?
simultaneously:

ay ' api 20
or adaptively switching between (4)+(4’) and (5), depending on

the relative size of the estimated £nite difference increments oj
and ay. These increments are

oi = |pi|/max(rRTOL,U),
1

~ max(L/,[[si [wrws/[Pil)
0 = min(aj, Oy) .

Oy

2.3 Adjoint Sensitivity Analysis

In the forward sensitivity approach described in the previous
section, obtaining sensitivities with respect to Ng parameters is
roughly equivalent to solving an ODE system of size (14 Ng)N.
This can become prohibitively expensive, especially for large-
scale problems, if sensitivities with respect to many parameters
are desired. In this situation, the adjoint sensitivity method is
a very attractive alternative, provided that we do not need the
solution sensitivities s;, but rather the gradients with respect to
model parameters of a relatively few derived functionals of the
solution. In other words, if y(t) is the solution of (1), we wish to
evaluate the gradient dG/dp of

1;
G(p) :/tofg(t,y, p)dt, (6)

or, alternatively, the gradient dg/dp of the function g(t,x, p) at
time t;. The function g must be smooth enough that dg/dy and
0g/0dp exist and are bounded. The gradient of G with respect to
p is simply

dG % /dg of
— =\ (to)s(tg) + <—+)\T—>dt, 7
ap " (ors)t 5 TN p "

where A is solution of

Copyright (© 2005 by ASME

and s(tp) = dyo/0p. The gradient of g(ts,y, p) with respect to p
can be then obtained by using the Leibnitz differentiation rule
[18].

The £rst thing to notice about the adjoint system (8) is that
there is no explicit specifcation of the parameters p; this implies
that, once the solution A is found, the formula (7) can then be
used to £nd the gradient of G with respect to any of the parame-
ters p. The second important remark is that the adjoint systems
are terminal value problems which depend on the solution y(t)
of the original IVP (1). Therefore, a procedure is needed for pro-
viding the states y obtained during a forward integration phase
of (1) to CVODES during the backward integration phase of (8).
The approach adopted in CVODES, similar to that implemented
in DASPKADJOINT [8], is justifed below.

Since CVODES implements variable-stepsize integration
formulas, it is unlikely that the states will be available at the de-
sired time and therefore some form of interpolation is needed.
The CVODES implementation being also variable-order, it is
possible that during the forward integration phase the order may
be reduced as low as £rst order, which means that there may
be points in time where only y and ¢ are available. There-
fore, CVODES employs a cubic Hermite interpolation algorithm.
However, especially for large-scale problems and long integra-
tion intervals, the number and size of the vectors y and ¢ that
would need to be stored make this approach computationally in-
tractable.

CVODES settles for a compromise between storage space
and execution time by implementing a check-pointing scheme
which, at the cost of at most one additional forward integration,
offers the best possible estimate of memory requirements for ad-
joint sensitivity analysis. Note that truly optimal checkpoint-
ing [19] cannot be used since the number of integration steps
is not known apriori.

To begin with, based on the problem size N and the avail-
able memory, the user decides on the number Ny of data pairs (y,
$) that can be kept in memory for the purpose of interpolation.
Then, during the £rst forward integration stage, every Ng integra-
tion steps a check point is formed by saving enough information
(either in memory or on disk if needed) to allow for a hot restart,
that is, a restart that will exactly reproduce the forward integra-
tion. In order to avoid storing Jacobian-related data at each check
point, a reevaluation of the iteration matrix is forced before each
check point. The backward integration from check point i+ 1
to check point i is preceded by a forward integration from i to
i + 1 during which Ny data pairs (y, ¢) are generated and stored
in memory for interpolation. This approach, illustrated in Fig. 1,
transfers the uncertainty in the number of integration steps in the
forward integration phase to uncertainty in the £nal number of
check points. However, N¢ is much smaller than the number of
steps taken during the forward integration, and there is no major
penalty for writing and then reading check point data to/from a
temporary £le.

<_
\ Backward pass

Figure 1. CHECK-POINTING ALGORITHM FOR GENERATION OF
THE FORWARD SOLUTION DURING THE BACKWARD INTEGRATION
PHASE.

We note that the adjoint sensitivity module in CVODES pro-
vides the infrastructure to integrate backwards in time any ODE
terminal value problem dependent on the solution of the 1\VVP (1),
including the adjoint system (8), as well as any other quadra-
ture ODEs that may be needed in evaluating the integral in (7).
In particular, for ODE systems arising from semi-discretization
of time-dependent PDEs, this feature allows for integration ei-
ther of the discretized adjoint PDE system or of the adjoint of
the discretized PDE, since these two formulations are not equiv-
alent [20, 21].

Finally, we mention that, when using the backward integra-
tion module for adjoint sensitivity analysis, the CVODES inter-
face allows for user-provided functions for the evaluation of the
adjoint systems that are generated through reverse automatic dif-
ferentiation. Due to the current development stage of reverse
AD tools for C codes, CVODES cannot provide generic wrap-
pers (as done, for example, in DASPKADJOINT for Fortran77
codes). At this time, the burden of interfacing CVODE with AD-
generated functions must rely on the user.

3 Code Organization

As mentioned before, the SUNDIALS suite consists of the
basic solvers CVODE (for ODE systems), KINSOL (for non-
linear algebraic systems), and IDA (for DAE systems) and of
sensitivity-capable variants, CVODES, IDAS, and KINSOLS
(the last two being currently under development). The overall
organization of the CVODES package, as well as its relationship
to SUNDIALS, is shown in Fig. 2. The basic elements of the
CVODES structure are a module for the basic integration algo-
rithm (including forward sensitivity analysis), a module for ad-
joint sensitivity analysis, and a set of modules for the solution
of linear systems that arise in the case of a stiff system. Mod-
ules which are shared across the entire SUNDIALS suite include
generic linear system solvers, and the NVECTOR modules (de-
scribed further below).

The central CVODES integration module deals with the
evaluation of integration coef£cients, the functional or Newton
iteration process, estimation of local error, selection of stepsize
and order, and interpolation to user output points, among other

Copyright (© 2005 by ASME

SUNDIALS

[CVODE] [KINSOL] [IDA j (CVODES

' '

! {

(CVDIAG) (CVDENSE) (CVBAND)

(CVSPGMR J

CVBANDPRE
CVBBDPRE

| NVECTOR | | DENSE | | BAND | SPGMR

|
' '

| NVECTOR_SERIAL | | NVECTOR_PARALLEL |

ITERATIVE

Figure 2. OVERALL STRUCTURE DIAGRAM OF TE CVODES PACAGE. MODULES SPECIFIC TO CVODES ARE DISTINGUISHED BY ROUNDED
BOXES, WHILE GENERIC SOLVER AND AUXILIARY MODULES ARE IN SQUARE BOXES.

issues. Although this module contains logic for the basic New-
ton iteration algorithm, it has no knowledge of the method being
used to solve the linear systems that arise. For any given user
problem, one of the linear system modules is specifed and is
then invoked as needed during the integration.

In addition, if forward sensitivity analysis is turned on, the
main module will integrate the forward sensitivity equations, si-
multaneously with the original 1\VVP. The sensitivities variables
may or may not be included in the local error control mechanism
of the main integrator. CVODES provides three different strate-
gies of dealing with the correction stage for the sensitivity vari-
ables, simultaneous corrector and two variants of staggered cor-
rector (see Section 2.2). The CVODES package includes an al-
gorithm for the approximation of the sensitivity equations right-
hand sides by difference quotients, but the user has the option of
supplying these right-hand sides directly.

The adjoint sensitivity module provides the infrastructure
needed for the integration backwards in time of any system of
ODEs which depends on the solution of the original I\VP, in par-
ticular the adjoint system and any quadratures required in evalu-
ating the gradient of the objective functional. This module deals
with the set-up of the check points, interpolation of the forward
solution during the backward integration, and backward integra-
tion of the adjoint equations.

At present, the CVODES package includes four linear sys-
tem solution modules, of which three use direct methods, and one
uses scaled preconditioned GMRES, a Krylov subpsace method.
For the latter, two preconditioner modules are also included, one
for use on serial computers, and one for parallel. All of these
are virtually identical to the corresponding modules for CVODE,
which are described in detail in [5]. In addition, the user of
CVODES may supply his/her own linear solver module, fol-
lowing specifcations given in the user documentation. Thus an

existing linear system solver can be incorporated by providing
short interface functions between CVODES and the linear sys-
tem solver.

All state information used by CVODES to solve a given
problem is saved in a structure, and a pointer to that structure
is returned to the user. There is no global data in the CVODES
package, and so in this respect it is reentrant. State information
specifc to the linear solver is saved in a separate structure, a
pointer to which resides in the CVODES memory structure. The
reentrancy of CVODES was motivated by the anticipated multi-
computer extension but is also essential during adjoint sensitivity
analysis where the check-pointing algorithm leads to interleaved
forward and backward integration passes.

Figure 2 does not show any of the user-supplied functions
for CVODES. At a minimum, the user must provide a function
for the evaluation of the ODE right-hand side and, if perform-
ing adjoint sensitivity analysis, a function for the evaluation of
the right-hand side of the adjoint system. Optional user-provided
functions include, depending on the options chosen, functions
for Jacobian evaluation (direct cases) or Jacobian-vector prod-
ucts (Krylov case), setup and solution of Krylov preconditioners,
a function providing the integrand of any additional quadrature
equations, and a function for providing the right-hand side of the
sensitivity equations (for forward sensitivity analysis). Depend-
ing on the options selected for the solution of the adjoint system,
the user may have to provide corresponding Jacobian and/or pre-
conditioner functions.

One of the most important characteristics of the design of
CVODES (shared by all solvers across SUNDIALS) is the fact
that it is implemented in a data-independent manner, in that the
solver does not need any information regarding the underlying
structure of the data on which it operates.

The CVODES solver acts on vectors through a generic

Copyright (© 2005 by ASME

NVECTOR module, which defnes an NVECTOR structure
specifcation, a data-independent NVECTOR type, a set of ab-
stract vector operations, and a set of wrappers for accessing the
actual vector operations of the implementation under which an
NVECTOR was created. Because details of vector operations are
thus encapsulated within each speciEc NVECTOR implemen-
tation, CVODES is thus independent of a specif£c implementa-
tion. This allows the solver to be precompiled as a binary library
and allows more than one NVECTOR implementation to be used
within a single program. This feature is essential for the efEcient
integration of quadrature variables (see Section 2.1) as well as for
adjoint sensitivity analysis when, for some problems, the adjoint
variables are more conveniently organized in a structure different
from that of the variables in the forward problem.

A particular NVECTOR implementation, such as the se-
rial and parallel implementations included with SUNDIALS or
a user-provided implementation, must provide the following:
(1) actual implementation of the functions for operations on N-
vectors, such as creation, destruction, summation, and dot prod-
uct; (2) a function to construct an NVECTOR speci£cation struc-
ture for this particular implementation, which defnes the data
necessary for constructing a new N-vector and attaches the vec-
tor operations to the new structure; and (3) a destructor for the
NVECTOR specifcation structure.

4 CVODES Usage

In this section we give an overview of the usage of CVODES
for ODE integration, forward sensitivity analysis, and adjoint
sensitivity analysis. Complete documentation of the code usage
is given in [22].

One of the guiding principles in designing the user interface
to the CVODES solver has been to allow user to transit from just
integration of ODES to performing sensitivity analysis in as rapid
and seamless a manner as possible. To achieve this goal, we have
opted not to modify any of the CVODE user interface to account
for the initialization and set up of sensitivity analysis.

Instrumenting an existing user code for forward sensitiv-
ity analysis can thus be done by only inserting a few calls to
CVODES functions, additional to those required for setting up
and solving the original ODE (steps 7, 8, 10, and 12 below). We
give below the main steps required to set up, initialize, and solve
an IVP ODE, and optionally perform forward sensitivity analysis
with respect to some of the model parameters. This sequence of
calls is the most natural one, but the order of some of the steps
below can be changed. For example, initialization and alloca-
tion for forward sensitivity analysis could be performed before
attaching and con£guring the linear solver module. Similarly,
changing optional inputs to the solver (step 3) could follow the
memory allocation step 4.

1. An implementation dependent NVECTOR specifcation

10.

11.

constructor must £rst be called. For the two NVECTOR
implementation provided with SUNDIALS, serial and MPI
parallel, the constructor functions are NV_New_Ser i al and
NV_New_Par al | el , respectively.

. CVodeCr eat e creates the solver object. The user must

specify the linear multistep method to be used (Adams or
BDF) and the nonlinear iteration type (functional or New-
ton). Various options controlling the solver are set to their
default values.

. CVodeSet * functions can now be used to change various

controls from their default values. Choices and default val-
ues are given in Table 2.

. CVodeMal | oc must be called next to perform any required

memory allocation, after checking the initialized memory
block for errors in the default or optional inputs. At this step
the user must specify the function providing the ODE right-
hand side, the initial time and initial values, as well as the
desired integration tolerances.

. CvDense, CvBand, CVDi ag, or CVSpgnr . If Newton

iteration was selected in step (2), a linear solver is needed
for solving the linear systems that arise during the Newton
iterations. A linear solver object (dense, band, diagonal, or
SPGMR) must now be created and attached to the block of
memory allocated for the solver. Various options controlling
the linear solver are set to their default values.

. CVDenseSet *, CvBandSet *, or CVSpgnr Set *. At

this stage, the default values in the linear solver memory
block can be changed if so desired. Choices and default val-
ues are given in Table 3.

. CVodeSet Sens* functions can be called to change from

their default values the optional inputs that control the inte-
gration of the sensitivity systems (see Table 2).

. CVodeSensMal | oc must be called if solution sensitivi-

ties are desired. This function initializes and allocates mem-
ory for forward sensitivity calculations. At this stage the
user specifes the number of sensitivities to be computed, the
forward sensitivity method the model parameters, as well as
the initial values for the sensitivity variables.

CVode solves the problem. The solver function is typically
called in a loop over the desired output times. The user can
have the solver take internal steps until it has reached the
user-specifed tqy or return control to the user’s main pro-
gram after taking one successful step. Additionally, the user
can direct the solver to test tgqp SO that the integration never
proceeds beyond this value.

CVodeGet Sens extracts the sensitivity solution vectors. If
forward sensitivity analysis had been enabled in step 8, solu-
tions sensitivities are computed at the same time as the ODE
solution and are available to the user through this function.
CVodeGet *. Optional outputs and statistics for the main
solver are available through extraction functions. A com-
plete list of the optional outputs from CVVODES is given in

Copyright (© 2005 by ASME

Table 4.

12. CVodeGet *Sens*. Optional outputs related to the so-
lution of the sensitivity systems are available through ad-
ditional extraction functions (see Table 4). More optional
statistics (not listed) are available for the staggered corrector
forward sensitivity method.

13. CvDenseGet*, CVBandGet*, CVDi agGet* or
CVSpgnr Get *. These functions provide optional statistics
from the linear solver module.

14. CVodeFr ee. To complete the process, the user must make
the appropriate calls to free memory that was allocated in the
previous steps (vector specifcation objects, solver memory
block, and any user data).

If there are any quadrature equations that must also be integrated,
the user’s main program must construct an additional NVECTOR
speci£cation object. Integration of the quadrature variables is ac-
tivated and initialized through a call to the CVODES function
CVodeQuadMal | oc, which must specify the user-provided
function for the evaluation of the quadrature integrands and the
integration tolerances for quadrature variables. As before, the
user has the option of changing from their default values various
quantities controlling the quadrature integration (see Table 2).
All these calls must preceed any call to the main CVODES solver
function. After a successful return from CVode, the quadra-
ture variables are accessible through a call to CVodeGet Quad,
and solver statistics related to quadrature integration are available
through the functions listed in Table 4.

Adjoint sensitivity analysis inherently affects to a much
greater extent the user interface, mainly due to the coupling be-
tween the forward and backward integration phases. In designing
the user interface to the adjoint sensitivity module in CVODES
we have strived to maintain the same “look and feel” as for that
used for ODE and forward sensitivity solution. The initialization
and set-up of the forward phase is the same as above. Before
calling the main solver for the forward integration, the user must
call the CVODES function CVadj Mal | oc to initialize and al-
locate memory for the structure holding the check-pointing and
interpolation data. The forward integration and check-point gen-
eration is done through a call to CVodeF, a wrapper around the
CVode function in step 9 above. The initialization, set-up, and
solution of the adjoint problem is then done in the same way
as for a regular forward ODE integration but calling CVODES
and linear solver wrapper functions that have the names men-
tioned before with the sufEx B attached. Some examples of
such CVODES functions are: CVodeCr eat eB, CVSpgnr B,
CVodeMal | ocB, and CVodeB.

5 Parallel Example Problem
The most preeminent advantage of CVODES over existing
sensitivity solvers is the possibility of solving very large-scale

problems on massively parallel computers. To illustrate this
point we present speedup results for the integration and forward
sensitivity analysis for an ODE system generated from the fol-
lowing 2-species diurnal Kinetics advection-diffusion PDE sys-
tem in 2 space dimensions:

dCi dZCi +V%+dezci

E: hd? ax d?"_Ri(Cvath)?

fori=1,2,
9)

where

Ri(c1,C2,t) = —01C1C3 — 02€1C2 + 203(t)C3 + a(t)C2,

10
R2(C1,C2,t) = (1C1C3 —g2C1C2 — Ga(t)Ca, (10)

Kn, Ky, v, 01, g2, and cz are constants, and gs(t) and ga(t)
vary diurnally. The problem is posed on the square 0 < x < 20,
30 <z <50 (all in km), with homogeneous Neumann boundary
conditions, and for time tin 0 <t < 86400 (1 day). The PDE sys-
tem is treated by central differences on a uniform mesh, except
for the advection term, which is treated with a biased 3-point dif-
ference formula. The initial pro£les are proportional to a simple
polynomial in x and a hyperbolic tangent function in z.

The solution with CVODES is done with the BDF/GMRES
method (i.e. using the CVSPGMR linear solver) and the block-
diagonal part of the Newton matrix as a left preconditioner. A
copy of the block-diagonal part of the Jacobian is saved and con-
ditionally reused within the preconditioner setup function.

The problem is solved by CVODES on P processors, treated
as a rectangular process grid of size px x pz. Each processor con-
tains a subgrid of size n = ny x n, of the (x,z) mesh. Thus the ac-
tual mesh size is Ny x N = (pxnx) X (pznz), and the ODE system
size is N = 2NxN,. Parallel performance tests were performed
on ASCI Frost, a 68-node, 16-way SMP system with POWER3
375 MHz processors and 16 GB of memory per node. Speedup
results for a global problem size of N = 2NyNy = 2-1600-400 =
1280000 shown in Fig. 3 and listed in Table 1. We present tim-
ing results for the integration of only the state equations (column
STATES), as well as for the computation of forward sensitivi-
ties with respect to the diffusion coeffcients Ky and K, using
the staggered corrector method without and with error control on
the sensitivity variables (columns STG and STG_FULL, respec-
tively). We note that there was not enough memory to solve the
problem (even without carrying sensitivities) on fewer proces-
sors.

The departure from the ideal line of slope —1 is explained
by the interplay of several conzicting processes. On one hand,
when increasing the number of processors, P, the preconditioner
quality decreases, as it incorporates a smaller and smaller frac-
tion of the Jacobian and the cost of inter-process communication
increases. On the other hand, decreasing P leads to an increase

Copyright (© 2005 by ASME

4096

2048 —— STATES |
S - STG

10247 N \.\ - STG_FULL i

512

256

128

CPU time (s)

(o))
&

w
N

16

84 8 16 32 64 128 256
Number of processors

Figure 3. SPEEDUP RESULTS FOR THE INEGRATION OF THE
STATE EQUATIONS ONLY (SOLID LINE AND COLUMN ’'STATES’),
STAGGERED SA WITHOUT ERROR CONTROL ON THE SENSITIV-
ITY VARIABLES (DASHED LINE AND COLUMN ’'STG’), AND STAG-
GERED SA WITH FULL ERROR CONTROL (DOTTED LINE AND COL-
UMN 'STG_FULL).

in the cost of the preconditioner setup phase and to a larger lo-
cal problem size which can lead to a point where a node starts
memory paging to disk.

6 Availability

The CVODES package has been released under
a BSD open source license and is freely available at
www.lInl.gov/CASC/sundials, or through the DOE ACTS
web site at acts.nersc.gov/sundials/main.html.

7 Conclusions

CVODES is the £rst in a series of new additions to SUN-
DIALS. The new codes, IDAS and KINSOLS, together with
CVODES, will provide sensitivity analysis for all the classes of

Table 1. SPEEDUP RESULTS

P STATES STG STG_FULL

4 460.31 1414.53 2208.14

8 211.20 646.59 1064.94
16 97.16 320.78 417.95
32 42.78 137.51 210.84
64 19.50 63.34 83.24
128 13.78 42.71 55.17
256 9.87 31.33 47.95

problems addressed by the basic SUNDIALS solvers. These new
capabilities extend the versatility and functionality of the SUN-
DIALS solvers in addressing new classes of applications, such
as dynamically-constrained optimization, inversion, and uncer-
tainty quanti£cation.

Like all of SUNDIALS, CVODES is under active develop-
ment. An area of particular interest is in the automatic gener-
ation of the sensitivity equations. A parser and code generator
for the automatic generation of derivative approximations using
the complex step method is underway. Automatic differentiation
(AD) tools will be incorporated as they become available; we
are especially interested in adding reverse AD capabilities to the
SUNDIALS adjoint sensitivity solvers. We are currently inves-
tigating alternatives to checkpointing within the adjoint solver
in CVODES: one direction is in using reduced order models of
the forward problem, while another is in storing the complete
decision history on the £rst forward pass and re-using it on the
second pass. Finally, to address language interoperability issues
and thus facilitate the use of the SUNDIALS solvers for users
of other programming languages, we plan to generate Babel [23]
wrappers for them.

REFERENCES

[1] Brown, P. N., Byrne, G. D., and Hindmarsh, A. C., 1989.
“VODE, a variable-coeffcient ODE solver”. SIAM J. Sci.
Stat. Comput., 10, pp. 1038-1051.

[2] Byrne, G. D., 1992. “Pragmatic experiments with Krylov
methods in the stiff ODE setting”. In Computational Ordi-
nary Differential Equations, J. Cash and I. Gladwell, eds.,
Oxford University Press, pp. 323-356.

[3] Cohen, S. D., and Hindmarsh, A. C., 1996. “CVODE,
a stiff/nonstiff ODE solver in C”. Computers in Physics,
10(2), pp. 138-143.

[4] Byrne, G. D., and Hindmarsh, A. C., 1999. “PVODE, an

Copyright (© 2005 by ASME

ODE solver for parallel computers”.
Comput. Apps., 13(4), pp. 254-365.
Hindmarsh, A. C., Brown, P. N., Grant, K. E., Lee,
S. L., Serban, R., Shumaker, D. E., and Woodward,
C. S., 2004. “SUNDIALS, Suite of Nonlinear and Dif-
ferential/Algebraic Equation Solvers”. ACM Trans. Math.
Softw.(in press).

Hindmarsh, A. C., and Serban, R., 2004. User documen-

tation for CVODE v2.2.0. Tech. Rep. UCRL-SM-208108,

LLNL.

Li, S., and Petzold, L. R., 2000. “Software and algorithms

for sensitivity analysis of large-scale differential-algebraic

systems”. J. Comp. Appl. Math., 125, pp. 131-145.

Li, S., and Petzold, L. R., 2000. Description of DASP-

KADJOINT: An adjoint sensitivity solver for differential-

algebraic equations. Tech. rep., Dept. of Computer Science,

UCSB.

Caracotsios, M., and Stewart, W. E., 1985. “Sensitivity

analysis of initial value problems with mixed ODEs and al-

gebraic equations”. Computers and Chemical Engineering,

9, pp. 359-365.

Li, S., Petzold, L. R., and Zhu, W., 1999. “Sensitivity anal-

ysis of differential-algebraic equations: A comparison of

methods on a special problem”. Appl. Num. Math., 32(2),

pp. 161-174.

Maly, T., and Petzold, L. R., 1996. “Numerical meth-

ods and software for sensitivity analysis of differential-

algebraic systems”. Appl. Num. Math., 20, pp. 57-79.

[12] Feehery, W. F., Tolsma, J. E., and Barton, P. I., 1997.
“Effcient sensitivity analysis of large-scale differential-
algebraic systems”. Appl. Num. Math., 25(1), pp. 41-54.

[13] Tocci, M. D., 2001. “Sensitivity analysis of large-scale time
dependent PDEs”. Appl. Num. Math., 37(1), pp. 109-125.

[14] Li, S., and Petzold, L. R., 1999. Design of new DASPK for
sensitivity analysis. Tech. rep., Dept. of Computer Science,
UCSB.

[15] Feehery, W. F., 1998. Dsl48s manual. Tech. Rep. ABA-
CUSS Project Report 98/1, MIT.

[16] Martins, J., Sturdza, P., and Alonso, J., 2003. “The

complex-step derivative approximation”. ACM Trans.

Math. Softw., 29(3), pp. 245-262.

Bischof, C. H., Roh, L., and Mauer-Oats, A. G., 1997.

“ADIC: An extensible automatic differentiation tool for

ANSI-C”. Software - Practive and Experience, 27(12),

pp. 1427-1456.

Cao, Y., Li, S., Petzold, L. R., and Serban, R., 2003.

“Adjoint sensitivity analysis for differential-algebraic equa-

tions: The adjoint DAE system and its numerical solution”.

SIAM J. Sci. Comput., 24(3), pp. 1076-1089.

Griewank, A., and Walther, A., 2000. “Algorithm 799: Re-

volve: An implementation of checkpointing for the reverse

or adjoint mode of cimputatinal differentiation”. ACM

Intl. J. High Perf.

[5]

[6]

[7]

(8]

9]

[10]

[11]

[17]

(18]

[19]

10

Trans. Math. Softw., 26(1), pp. 19-45.
[20] Arian, E., and Salas, M., 1997. Admitting the inadmissi-
ble: Adjoint formulation for incomplete cost functionals in
aerodynamic optimization. Tech. Rep. 97-69, ICASE.
Li, S., and Petzold, L. R., 2004. “Adjoint sensitivity
analysis for time-dependent partial differential equations
with adaptive mesh reEnement”. J. Comp. Phys., 198(1),
pp. 310-325.
Hindmarsh, A. C., and Serban, R., 2004. User documenta-
tion for CVODES v2.1.0. Tech. Rep. UCRL-SM-208111,
LLNL.
Kohn, S., Kumfert, G., Painter, J., and Ribbens, C., 2001.
“Divorcing language dependencies from a scientifc soft-
ware library”. In 10th SIAM Conference on Parallel Pro-
cessing.

[21]

[22]

[23]

Copyright (© 2005 by ASME

Table 2. OPTIONAL INPUTS FOR THE MAIN CVODES SOLVER

Optional input

Function name

Default

Pointer to an error output £le

Data for right-hand side function

Maximum order for BDF (or Adams) method
Maximum no. of internal steps before tqy
Maximum no. of warnings for h < U

Flag to activate stability limit detection
Initial step size

Minimum absolute step size

Maximum absolute step size

Value of tgop

Maximum no. of error test failures
Maximum no. of nonlinear iterations
Maximum no. of convergence failures
CoefEcient in the nonlinear convergence test
Data for quadrature right-hand side function
Error control on quadrature variables
Tolerances for quadrature variables
Sensitivity right-hand side function

Data for sensitivity right-hand side function
Error control on sensitivity variables
Control for difference quotient approximation
Vector of problem parameter scalings

Tolerances for sensitivity variables

CVodeSetErrFile
CVodeSet Fdat a
CvodeSet MaxOrd
CVodeSet MaxNuntt eps
CVodeSet MaxHni | War ns
CVodeSet St abLi nDet
CVodeSetInit Step
CVodeSet M nSt ep
CVodeSet Max St ep
CVodeSet St opTi ne

CVodeSet MaxErr Test Fai | s
CVodeSet MaxNonl i nlters

CVodeSet MaxConvFai | s
CVodeSet Nonl i nConvCoef
CVodeSet QuadFdat a
CVodeSet QuadEr r Con

CVodeSet QuadTol er ances

CVodeSet SensRhsFn
CVodeSet SensFdat a
CVodeSet SensEr r Con
CVodeSet SensRho
CVodeSet SensPbar

CVodeSet SensTol er ances

NULL
NULL
5(12)
500

10
FALSE
estimated
0.0

0

)

7

3

10

0.1
NULL
FALSE
none
internal DQ
NULL
FALSE
0.0
NULL

estimated

11

Copyright (© 2005 by ASME

Table 3. OPTIONAL INPUTS FOR THE CVODES LINEAR SOLVER MODULES

Linear solver Optional input Function name Default
CVDENSE Dense Jacobian function CVDenseSet Jackn internal DQ
Data for Jacobian function CVDenseSet JacDat a NULL
CVBAND Band Jacobian function CvBandSet JacFn internal DQ
Data for Jacobian function CvBandSet JacDat a NULL
CVSPGMR Preconditioner solve function CVvSpgnr Set Pr ecSol veFn NULL
Preconditioner setup function CVSpgnt Set Pr ecSet upFn NULL
Data for preconditioner functions CVSpgnt Set PrecDat a NULL
Jacobian times vector function CvSpgnr Set JacTi mesVecFn NULL
Data for Jacobian times vector function CVSpgnr Set JacDat a NULL
Type of Gram-Schmidt orthogonalization CVSpgnr Set GSType classical GS
Ratio between linear and nonlinear tolerances CVSpgnr Set Del t 0.05

12

Copyright (© 2005 by ASME

Table 4. PRINCIPAL CVODES OPTIONAL OUTPUTS

Optional output

Function name

Size of CVODES integer workspace

Size of CVODES real workspace

Cumulative number of internal steps

No. of calls to r.h.s. function

No. of calls to linear solver setup function

No. of local error test failures that have occurred
Order used during the last step

Order to be attempted on the next step

Order reductions due to stability limit detection
Actual initial step size used

Step size used for the last step

Step size to be attempted on the next step
Current internal time reached by the solver
Suggested factor for tolerance scaling

Error weight vector for state variables

Estimated local error vector

No. of nonlinear solver iterations

No. of nonlinear convergence failures

No. of calls to quadrature r.h.s. function

No. of quadrature local error test failures

Error weight vector for quadrature variables

No. of calls to sensitivity r.h.s. function

No. of calls to r.h.s. function due to (4) or (5)
No. of sensitivity local error test failures

No. of calls to linear solver setup for forward SA
Error weight vectors for sensitivity variables

No. of nonlinear solver iterations for forward SA

No. of sensitivity nonlinear convergence failures

CVodeGet | nt Wor kSpace

CVodeCet Real Wr kSpace

CVodeGet Nuntst eps

CVodeCet NunRhsEval s

CVodeGet Nunii nSol vSet ups
CVodeGet Nuntrr Test Fai | s
CVodeGet Last Or der

CVodeCet Current O der

CVodeCet Nuntst abLi mOr der Reds
CVodeGet Actual I nit Step
CVodeGet Last St ep

CVodeGet Current St ep

CVodeGet Current Ti ne

CVodeGet Tol Scal eFact or

CVodeGet Err Wi ght s

CVodeCet Est Local Errors
CVodeGet NunNonl i nSol viters
CVodeGet NumNonl i nSol vConvFai | s
CVodeGet NumQuadRhsEval s
CVodeGet NumQuadErr Test Fai | s
CVodeGet QuadEr r Wi ght s
CVodeCet NunSensRhsEval s
CVodeCet NunRhsEval sSens
CVodeGet NunSensErr Test Fai | s
CVodeGet NunensLi nSol vSet ups
CVodeGet SensEr r Wi ght s
CVodeGet NunsensNonl i nSol viters
CVodeGet NunsensNonl i nSol vConvFai | s

13

Copyright (© 2005 by ASME

